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The overdetermined linear system for the self-dual Yang-Mills (SDYM) equations is ex- 
amined in a fiat four-dimensional space whose metric has signature 0. There are three different 
domains for the system, and correspondingly three (essentially) different solutions to the lin- 
ear system for a given gauge field. If the gauge potential is real analytic, two of the solutions 
patch together to give a holomorphic function in an annular region of projective twistor space. 
Conversely, an arbitrary hotomorphic GL(n, C)-valued function in such a domain can be 
uniquely factored (on the real lines) to give a solution to SDYM with gauge group U(n) .  The 
set of all real analytic u(n)-valued gauge fields can thus be parametrized by the points of a 
certain double coset space. 
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As Richard Ward showed a number of years ago [ 1 ], the study of real analytic 
self-dual gauge fields in four dimensions is equivalent to the study of certain ho- 
lomorphic vector bundles on domains in P3 ( C ) .  Analyticity is actually a conse- 
quence of self-duality in the positive-definite case [ 2 ], in the sense that one can 
always construct a gauge in which the connection is real analytic. For the other 
signatures, non-analytic solutions are generic, so Ward's construction is not al- 
ways possible. In this paper, we examine some properties of the self-dual Yang- 
Mills (SDYM) fields in the flat "spacetime" Mwith  metric diag( 1, 1, - 1 ,  - 1 ). 
The main interest in these fields is that, in the presence of certain symmetries, 
they yield solutions to a number of important integrable systems. In particular, 
solutions to the KdV and non-linear Schr6dinger equations [ 3 ], the sine-Gordon 
equation, certain harmonic maps and non-linear a-models are all obtained by 
reduction [4 ] of the self-duality equations in M. We shall argue below that the 
full SDYM equations themselves possess an inherently rich mathematical 
structure. 

Recall [ 1 ] that the self-duality equations are the integrability conditions for 
the existence of solutions to the overdetermined linear system G-'DAG=FA, 
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where the operators D.j ( = ~t "~' VA.r ) contain an auxiliary spectral parameter tak- 
ing values on the Riemann sphere (see sections 2, 3). Due to the local isomor- 
phism SO(2, 2) ~ S U (  l, 1 ) × S U (  l, l ), the group SU( 1, l ) plays a fundamental 
role in the case of zero signature. Here the Riemann sphere decomposes into the 
disjoint union Do+ S ~ +Do~, of orbits of this group, where Do and D~o are the in- 
terior and exterior of the unit circle S ~. This has the consequence that there are 
three disjoint domains, M×Do, M ×  S ~, and M×Doo, for the linear system men- 
tioned above, rather than the more usual (single) bundle of projective spinors 
M x S  2. 

More precisely, the linear system on M x S  j (section 2) is a natural generali- 
zation of the extended linear system for harmonic maps [5,6]. It is solved in a 
straightforward way, by constructing parallel propagators in each of the real anti- 
self-dual two-planes in M, thus giving a totally real version of Ward's original 
construction. 

The bundles M×Do,oo can be identified with non-holomorphic fibrations of 
open subsets Po.oo of P3 (C) by unit disks (section 1 ). The construction of solu- 
tions to the corresponding linear system [by pulling back the complex structure 
ofP3(C) ] follows that ofAtiyah et al. [2] (section 3). 

In the real analytic case, of course, one obtains much stronger results (section 
4). Here the domains of the two constructions overlap, and the two different 
solutions to the linear system determine a non-singular holomorphic matrix func- 
tion in an "annular" region of Po. 

Conversely, specializing to the gauge group U(n) ,  we find that an arbitrary 
GL(n, C)-valued holomorphic function defined in such a domain of Po factors 
uniquely in each unit disk to give a real analytic solution to SDYM. The usual 
Riemann-Hilbert problem does not appear here. In fact, none of the solutions to 
the linear system discussed in this paper is obtained directly by splitting the tran- 
sition functions for a holomorphic bundle. But there is a different splitting which 
allows us to recover the gauge field in essentially the same manner. 

The group G of all such matrix-valued holomorphic functions is then mapped 
(by the factorization) onto the set of solutions to the linear system and hence 
onto the set of solutions to the SDYM equations. More precisely, the extended 
solutions of section 2 are parametrized by the points of a certain homogeneous 
space G/G+, and the self-dual gauge fields themselves by the points of a double 
coset space G r \  G/G+. 

1. The Penrose correspondence for M 

Let M denote R 4 with the indefinite metric dsZ+dt2-du2-dv 2. In the com- 
plex coordinates y=s+it, z=u+iv, this becomes dy d)7-dz dg, and a basis for 
the anti-self-dual (ASD) two-forms is given by {dy ̂  dz, d j7 n dL dy n d ~ -  dz ^ dg}. 
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The SDYM equations are F,,:=F~z= 0, Fy~- F.e= 0. 
For each triple (a, b, O) in R2X S 1 the points x =  (s, t, u, v ) e M  satisfying 

s = a - u c o s O - v s i n O ,  t=b-us inO+vcosO,  

form a real ASD two-plane. In terms of the complex coordinates, the equation is 
y=yo-1~ ,  where 2 = e  i° lies on the unit circle. Taking differentials, d y + 2 d g  
=0=d)7+2-1dz,  where the two-form ( I /2 i )  (dy+2  d#) A (dy+2-~dz)  is ASD, 
real, and vanishes on the two-plane. Alternatively, the real and imaginary parts 
of dy+1  dg= 0 determine the ASD two-plane. 

In this signature, the Penrose correspondence [ 7 ] associates to each point x =  
(y,)7, z, ~) e M t h e  projective line 

Lx={ (v, w, 2) : v=y+2#,  w=z+2J~, 2~Pl (C)} ( 1 ) 

in P3(C). The expression given above is for the affine chart (Z~) = (v, w, 1, 1). 
Recall that L.,. c~ L,., # ~ exactly when x and x' are null separated, and notice that 
for x, x' eM, the point of intersection, if it exists, necessarily occurs for some 
1=1' lying on the unit circle 121 = 1. 

Thus the conformal structure of M is completely determined by the real ( ~, S ~ ) 
projective lines {Lxl tam = ~, xeM}. Moreover, given x and a fixed ;t on the unit 
circle, the line Lx+,L~ intersects L,. at the point labeled by 2 if and only if 
dy+1 d:~=0. Now the set p N o f  points (v, w, 2) with 12[ = 1 that actually lie on 
lines corresponding to the points of M is three (real) dimensional, since v=y+2~, 
w=z+2~=~w=2O. Comparing this with the above gives a 1-1 correspondence 
between pN and the set of (finite) ASD two-planes in M. In fact, it is not difficult 
to check that pN is just P3(R)\P~ (R), where P3(R) is the totally real twistor 
space associated to M, and the deleted P~ (R) is the equator of the line corre- 
sponding to the vertex of the null cone at infinity. See, for example, the appendix 
in Penrose and Rindler [ 7 ]. 

We regard the correspondence as a map p from the trivial bundle M ×  S 2 into 

p: (y,y,z,#,1)-o(y+1#,z+t)7, 1 , I ) .  (2) 

The image of M × S  ~ is pN of course, and we denote the images of M×Do, 
MXDoo by Po, P~o, respectively. The map p is a real analytic bijection of 
M× S 2 \ M ×  S 1 onto Po u Poo; its inverse is given by 

v - t #  w - 2 0  
Y= 1-1212'  z=  1-1212'  1 = 1 .  (3) 

We may restrict our attention to Po,"~C2XDo={(v, w, 2): I11 < I}. (With the 
obvious changes, every statement about Po can be converted into one about Poo. ) 
As we saw above, for any distinct points x, x' in M, LxlPoc~Lx, [Po=~. In fact, Po 
is fibered (non-holomorphically) over M by these unit disks, the projection 



214 D.E. Lerner I Selfdual gauge fields in a spacetime of  signature 0 

r: Po--,M being given by 

v-2  w-2  
Y= [ 2, z =  , . I - 1 2  iZl-~-2J 121 < 1 

The natural projection n : M X D o ~ M  which sends (y, z, 2) to (y, z) is holo- 
morphic, and rt= rp. But neither r nor p is holomorphic, although z -  ~ (x) is the 
holomorphic "curve" Lx c~ Po. 

2. The linear system for 1~ I = 1 

In the next two sections, we consider what can be said about non-analytic so- 
lutions to the SDYM equations in M. We suppose a gauge exists in which the 
connection is C ~, although this condition can evidently be relaxed. Recall that 
the ASD two-planes in M are given by @ + 2  dg= 0, where 2 is some fixed point 
on the unit circle. If for each such 2 we introduce the complex coordinates 
~(2) = z - 2 ~ ,  r / (2)=y+2Z,  the ASD two-planes are then given by the complex 
lines ~/(2) = constant as 2 varies over the unit circle. 

Suppose now that A is a C ~ connection in the trivial n-plane bundle on M with 
self-dual curvature F = d A + A ^ A .  Fix a point (x, 2 ) e M × S  I. Then x lies in a 
unique ASD two-plane r/(2) =const. ,  and we can define ~-'(x, 2)- '=P(exp fA), 
where the parallel propagator is evaluated along any curve in the two-plane going 
from x to the point ( (2)  = 0. Independence of the path of  integration follows from 
self-duality. 

The function ~v then satisfies the equations ~- l [0 /0((2)]~=A¢¢a~,  
~ - t  [a/0(-(2) ] ~=A~c~), corresponding to the fact that A is a pure gauge in these 
two-planes. Rewriting this in terms of y and z, we get a solution to the linear 
system 

~[,/--l ( 0 / 0 Z - - 2  -- I 0 / ~ )  ~=A-  - 2  - lAss , (4a) 

7.1-, ( 0/0Z--2 810y) ~ = A e - 2 A y .  (4b) 

Conversely, it is well known and easily checked that the integrability condi-. 
tions for the overdetermined linear system (4) are precisely the SDYM equa- 
tions. If the gauge group is U (n),  then A is skew-Hermitian and the second equa- 
tion is minus the adjoint of  the first. The system is still overdetermined, however, 
because of the prescribed 2-dependence of the right-hand side. We can fix gauges 
uniquely by setting • (x, 2 ) = ~(x,  2 ) ~-~ (x, 1 ). Then • (x, 1 ) = L and the right- 
hand side of  (4) vanishes at 2=  I. In this gauge, the equations take the simpler 
form 

I~) --I ( O / ~ Z - - 2 - - l O / O y )  ¢ ~ :  ( 1 - -2- -1  )B , ( 5a ) 

• -~( 0 /0£ -20 /Oy)  O =  ( 1 - - 2 ) C ,  (Sb) 
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where B and C are matrices depending on x alone. IfA is skew-Hermitian, then 
C= -B* ,  and ¢(2 ,  x) is a smooth map from M t o  the based unitary loop group 
I2U(n), called an extended solution to the SDYM equations. Setting ~o(x) 
• "= ¢ (x ,  - 1 ) gives a smooth map of M into the group U (n) called a generalized 
harmonic map [6,8 ]. In particular, if ~0 is independent o f y  and Y, then it is har- 
monic in the usual sense [ 5 ], but we shall not pursue this any further here. 

Remark. Although the gauge of F = d A + A ^ A  is fixed by the requirement 
tP(x, 1 ) = / ,  the function ¢ (x ,  2) is certainly not unique. For we can replace it by 
y¢, where ~, is any smooth GL (n, C)-valued function which is annihilated by the 
two differential operators in (3). That is, ?(x, 2) =g(p (x, 2) ), where g is smooth 
on pN and gla=~=L The freedom here corresponds to smoothly varying the 
choice of origin ~(;t) = 0 in each ASD two-plane. We shall return to this point in 
section 5. 

3. The linear system for [g I < 1 

The first observation here is (cf. Atiyah et al. [2 ] ) 

Proposition 1. I fF  is self-dual on M, then z*F is o f  type (1,1) in the complex struc- 
ture of t'o. 

Proof A routine computation gives 

r* (dy A dJT+ dz ^ d~) = ( 1 - IAI 2 ) [ d r^  dO+dw A dvP 

--Z d/J^ d ~ - - y  d~ A d f f -  (y)7-- zZ)d~A d).] . 

Similarly v* (dy ^ dZ) and v* (dj7 ̂  dz) are of type ( I, 1 ). Since these span the self- 
dual two-forms in M, the result follows. [] 

Suppose now that A is a self-dual potential, and write ~¢:=z*A as the sum 
~ '  + ~ ' "  of forms of type ( 1, 0) and (0, 1 ), respectively. The proposition implies 
that 0~¢" + ~'" ^ ~¢" = 0. By a theorem of Malgrange [ 9 ] we can find an open 
cover {Ua} of Po and smooth functions ha: Ua--,GL(n, C) such that hy~Oha= 
~t- in Ua. The functions gd=h~hg  ~ , defined whenever U~c~ Ub~ ~, are then ho- 
lomorphic (Ogob=0). Since Po is Stein and topologically trivial, a theorem of 
Grauert [10] guarantees the existence of holomorphic functions c~:Ua--. 
GL(n, C) satisfying gao=CY ~ Cb. Then h:=caha=Cbhb is a global smooth function 
from Po to the general linear group such that h-~Oh = ~¢". 
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Theorem 2. For A and h as above, let H ( x, 2) = p*h. Then H is holomorphic in 2 
for 121 < 1 and solves the linear system 

H- ~ (0/0~-20/Oz)H=A~-2,4-, (6a) 

H - '  ( 0 / 0 e -  2 OlOy)H=Ae -L4:,.  ( 6b ) 

Proof 

where 

Now 

d "  =AodO+ A,~ dW+A,vcl2, 

h-tOoh=Ao= ( 1 - ] 2 [  2 ) - t ( A y - L 4 : )  , 

h-'O,vh=A,~= (1 - [ 2 [  2) - i  (Ag-Z4y) ,  

h -'Oj:h=Az= ( 1 - 1212) - ' {  -z(A,~ - aA__) - y ( A ~ - Z 4 , , ) } .  

0o= ( 1 -  1 ~ 1 : ) - ' ( 0 ; - 2  0_-), 

0,~= ( 1 -  1212 ) - ' ( 0 ~ - - 2  0y), 

so the first two of these are equivalent to (6) above. On the other hand, given the 
form of A~ and A,~, we may rewrite the third equation as 

h -i (Ozh+z Ooh+y O,~h) = 0 .  

Since det (h) # 0, this gives (0a-+ z 0o + y 0~)h = 0. But this is exactly the equation 
0H/0,(= 0, so H is holomorphic in 2. [] 

Remarks. 
( 1 ) Away from 2=0,  we can multiply (6a) by - 1/2 to get a system which is 

formally identical to (4). The 2-domains of the two systems are disjoint, how- 
ever, unless the connection is real analytic. 

(2) Under a gauge transformation A-~Q-~AQ+Q-~dQ, the function 
h--,hv* (Q). If the gauge is fixed as in the preceding section, the only freedom in 
h is that of left multiplication by an arbitrary holomorphic GL(n, C)-valued 
function on Po. 

(3) The situation is quite different in the positive definite case [2 ], where Po 
is replaced by topologically non-trivial sets containing entire projective lines. 
Rather than splitting globally, the corresponding holomorphic functions 
{hahF, l=gab} define a non-trivial holomorphic vector bundle over (all or part 
of ) P3 (C) which, by construction, is trivial on the lines corresponding to points 
in n :4. For xeH :4, gablL,, can be split into real analytic factors by solving the 
Riemann-Hilbert problem. Differentiating as in (6) above then gives a real an- 



D.E. Lerner / Self-dual gauge fields in a spacetime of  signature 0 217 

alytic connection which is gauge equivalent to the original one. This procedure is 
evidently not available in the case at hand. 

4. The analytic case 

Suppose now that the connection is both real analytic and u (n)-valued. Then 
the solution qb(x, 2) of section 2 is unitary and real analytic for (x, 2 ) ~ M × S  t. 
So it extends holomorphically in 2 to a neighborhood U of M ×  S I in MX S 2, where 
it satisfies ¢P* (x, 1/2) = q) - t (x, 2). Let Uo = Un  ( M x  Do) be the common do- 
main of q~ and the solution H of section 3. 

The product qbH- ~ is annihilated by the operators 0~-2 0_- and 0_~-2 0y. So, if 
we define g on p(U)onPo by p*g=~H -~, then g is holomorphic in v and w. 
Moreover, 0 ( ~ H  -~ ) /02=  0 = (0x+ z 0~ + y  0,o)g= 0a-g= 0, so g is holomorphic in 
2 as well. Now gl L,. is holomorphic and non-singular in an annulus of the form 
e.,-< 121 < 1 and evidently factors as 

g(y+22,  z + t y ,  2) = ¢ (x ,  2 ) . H - ' ( x ,  2 ) ,  (7) 

where both qb and H solve the appropriate linear systems for the same SDYM 
field. 

Conversely, suppose S is an open neighborhood of pN in P3(C), and set 
So=SnPo. Then we have 

Theorem 3. Let g: So ~ GL ( n, C ) be holomorphic. 
(a) For each x in M, glL,. factors uniquely as in (7), with • unitary and real 

analytic for (x, 2) ~ M x S  ~ and ~(x, 1 ) =-L H(x, 2) is real analytic in x and ho- 
lomorphic in 2for 121 < 1. 

(b) Both • and H solve the linear system for SD YM; in particular, the right-hand 
side of(6) is linear in 2. 

The proof is given elsewhere [ 8 ], but some remarks are in order. 
( 1 ) If g extends holomorphically to pN, then g l Lx is real analytic on the unit 

circle, and (a) is theorem 8.1.1 in Pressley and Segal [I 1 ]. In the general case, 
(a) follows from a combination of the cited theorem, a rescaling of  2, and the 
Birkhoff factorization [ 11 ]. Differentiability of the factors follows from unique- 
ness of the factorization. 

(2) To conclude that, say, H -  ~ (0.,,-2 0_-)H is linear in 2, one must show that it 
is globally defined on the Riemann sphere. This follows because 

[q~(x, 1/f~ ) .H-t  (x, I /,~) ]*=:I:I(x, 2 ).q~-' (x, 2 ) 

is the pullback to M ×  Do~ of a function ~ -  1, holomorphic in the corresponding 
subdomain of Po~. Since H is holomorphic in 2 for 121 > 1, differentiating both 
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glL~ and ~IL,- gives a common (hence global) result for H - ~ ( 0 ; - 2 ~ : ) H ,  
- t (0.~- 2 ~_.) ¢,  and ~ -  ~ (~.~- 2 ~..)~, which must therefore be linear in 2 by the 

usual argument [ 1 ]. 

5. Parametrizing the real analytic solutions 

Let G be the group, under pointwise multiplication, of holomorphic maps 
g: So--, GL (n, C ), where So is of  the form S n  Po, for some neighborhood S of pN. 
Two such maps are regarded as equivalent if they agree on their common domain. 
For each element of G, theorem 3 gives a unique extended solution ¢ ( x ,  2) to 
the linear system (5). The solution ¢ is clearly unchanged if (and only if)  g is 
replaced by gk, where k is non-singular and holomorphic on the whole of Po. De- 
noting the subgroup of holomorphic maps from Po to GL (n, C ) by G+, we obtain 
a bijection between the set of extended solutions and points of the homogeneous 
space G / G +. 

As for the gauge fields themselves, we have already remarked that requiring 
¢ ( x ,  I ) = I  uniquely fixes gauges. If two different extended solutions ¢ and T 
give the same gauge field, then necessarily ¢b ~ - 1 = P ' 7 ,  where ~ is real analytic 
and unitary on pN, and satisfies ~,(v, w, 1 ) - L  These maps also form a group, 
denoted Ga, under pointwise multiplication. As they all extend holomorphically 
into Po, we may regard GR as a subgroup of G. We then have 

Theorem 4. The set of  real analytic solutions to the SD YM equations on M with 
gauge group U ( n ) is parametrized by the double coset space Ga \ G/G +. 

Remark. We mention a peculiar consequence of the above results. Suppose the 
connection A is real analytic, but not skew-Hermitian, and let ~ and K be the 
solutions to (5) and (6), respectively. Then ~K-1 is still the pullback of a holo- 
morphic function g on some subdomain of Po. By theorem 3, it can be split as 
• H -  ~ (with ~ unitary on the unit circle) to get a different solution to the SDYM 
equations. In fact, ~ =  ~.  [H-~K] is exactly the unique factorization of a real 
analytic loop given by the theorem of Pressley and Segal cited above. In other 
words, take any real analytic solution ~g(x, 2) to the linear system on MX S ~ and 
think of it as a map Tf rom M t o  the loop group LGL(n, C). For each x in M, let 
• (x, 2) be the unique projection into OU(n)  given by the factorization. Then 
• (x, 2) is an extended (unitary) solution to the SDYM equations in M. 
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